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Phase ordering in bulk uniaxial nematic liquid crystals

Robert A. Wickham*

The James Franck Institute and Department of Physics, The University of Chicago, Chicago, Illinois 60637
~Received 16 July 1997!

The phase-ordering kinetics of a bulk uniaxial nematic liquid crystal is addressed using techniques that have
been successfully applied to describe ordering in the O(n) model. The method involves constructing an
appropriate mapping between the order-parameter tensor and a Gaussian auxiliary field. The mapping accounts
for both the geometry of the director about the dominant charge 1/2 string defects and biaxiality near the string
cores. At late timest following a quench, there exists a scaling regime where the bulk nematic liquid crystal
and the three-dimensional O~2! model are found to be isomorphic, within the Gaussian approximation. As a
consequence, the scaling function for order-parameter correlations in the nematic liquid crystal isexactlythat
of the O~2! model and the length characteristic of the strings grows ast1/2. These results are in accord with
experiment and simulation. Related models dealing with thin films and monopole defects in the bulk are
presented and discussed.@S1063-651X~97!06612-9#

PACS number~s!: 61.30.2v, 05.70.Ln, 64.60.Cn
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I. INTRODUCTION

ost phase-ordering systems studied to date support
one type of topologically stable defect species@1–3#. One
example is the O(n) model with ann-component vector or-
der parameter. In three spatial dimensions, the def
formed at the quench are linelike strings forn52 and point-
like monopoles forn53. Phase ordering in bulk uniaxia
nematic liquid crystals~nematics! provides the simplest sce
nario in which two defect species, monopoles and strings,
topologically stable. The stability of monopoles derives fro

the O~3! symmetry of the nematic directorn̂(rW,t). The addi-

tional invariance under the local inversionn̂(rW,t)→2n̂(rW,t)
allows the nematic to support stable charge 1/2 disclina
lines ~strings! @4#. The issue of which defect species dom
nates the dynamics in bulk nematics at late timest following
a quench has recently been settled. Cell-dynamical sim
tions using spin models of bulk nematics@5,6# have com-
puted the order-parameter correlation function and foun
to be indistinguishable from that of the O~2! model and con-
sistent with a string-dominated late-time scaling regime. E
periments by Chuanget al. @7# directly imaged the bulk nem
atic, revealing an intricate, evolving defect tangle. Wh
both types of defect were observed, the strings dominate
late times. The length scaleLs characterizing the typica
separation of the strings was seen to grow asLs;t1/2, while
the average line density of strinĝh& decayed like
^h&;Ls

22;t21. The study of ordering in nematics is also
interest to cosmologists@8,9# since similar processes involv
ing cosmic string and monopole evolution, thought to oc
in the early universe, may be responsible for structure
mation.

In this paper a theory is presented that describes the d
nant scaling behavior of the bulk nematic in terms of
string-dominated late-time regime. Generalizing a succes
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method used to treat the ordering kinetics of the O(n) model,
the nematic order-parameter tensor is mapped onto a
component Gaussian auxiliary field@2#. The string defects
explicitly appear in the construction of the mapping. As d
cussed below, this approach has several advantages ov
earlier, seminumerical theory by Brayet al. @10#.

The auxiliary field approach is first applied to the straig
forward case of phase ordering in nematic films contain
charge 1/2 vortices, which have been studied in simulati
@5# and experiments@11#. As in the bulk nematic, the map
ping is constructed to account for the rotation of the direc
by only p about the core of the defect. Once this is done
theory reveals that phase ordering in the nematic film
equivalent to phase ordering in the two-dimensional O~2!
model examined previously@2#. This is not surprising since
the two systems are known to be isomorphic@5,12#. Con-
structing a theory for the bulk nematic is more challengi
since the order-parameter tensor must include a biaxial p
near the core of the string. In the earlier theory of Brayet al.
@10# this point was not addressed since there they use
‘‘hard-spin’’ approximation for the dynamics of the nemati
However, the necessity of having a biaxial core region wh
treating the full equations has been noted in the numer
work of Schopohl and Sluckin@13# on bulk nematic string
defects in equilibrium. The present theory successfully inc
porates biaxiality and clarifies the role that it plays in t
coarsening of the bulk nematic. The theory recovers
growing lengthLs;t1/2 seen in simulations@5,6# and experi-
ments@7#. In the scaling regime, the order-parameter cor
lation function for the bulk nematic is found to beexactly
that of the three-dimensional O~2! model @2#, in excellent
agreement with simulations@5# ~Fig. 1!. Although the theo-
retical results of Brayet al. @10# suggested agreement b
tween the correlation function for the bulk nematic and t
O~2! model, they were unable to demonstrate an ex
equivalence since their theory was not based on a map
that explicitly contained strings. The major accomplishme
of this work is to analytically demonstrate the isomorphis
between the dynamics of the bulk nematic and the dynam
of the three-dimensional O~2! model, within the Gaussian

a,
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6844 56ROBERT A. WICKHAM
approximation. Through this isomorphism, the we
developed theory for the O~2! model @2,14,15# can be ap-
plied directly to the nematic. In particular, this theory pr
dicts that the average line density of string decays
^h&;Ls

22;t21 @14,16#, in accord with the experiments o
Chuanget al. @7#.

Although strings are generically present in bulk nemati
certain choices of experimental setup and sample mat
will produce copious amounts of monopoles at the que
@17#. The theory of Brayet al. @10# is unable to address thes
experiments since in that theory there is no signature
monopoles. However, within the framework presented be
it is relatively straightforward to develop a theory of nem
ics in which monopoles appear. In this theory the ord
parameter correlation function is found to be similar to~but
not exactly! that for the three-dimensional O~3! model @2#

FIG. 1. The scaling functionF(x) for order-parameter correla
tions as a function of the scaled lengthx5r /Ls(t) for the three-
dimensional O~2! model @2# is represented by the solid line. A
shown in Sec. III B, this function exactly describes order-param
correlations in bulk nematics. The cell-dynamical simulation data
Blundell and Bray@5# for this quantity in a bulk nematic are als
shown, as circles. The abscissa of the simulation data is scaled
to give the best fit to the theory.

FIG. 2. The scaling functionF(x) as a function of the scaled
lengthx5r /Lm(t) for order-parameter correlations in the theory f
monopoles in bulk nematics, discussed in Sec. IV, is represente
the lower curve. The upper curve is the scaling function for ord
parameter correlations in the three-dimensional O~3! model from
@2#. The circles are the cell-dynamical simulation data of Blund
and Bray@5# for F in a bulk nematic. The abscissa of the simulati
data is scaled so as to give the best fit to the theory for monop
in bulk nematics.
s
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~Fig. 2!. The characteristic monopole spacingLm grows as
Lm;t1/2 and leads to a decaying average monopole den
^n&;Lm

23;t23/2. Experiments@17# that examine monopole
antimonopole annihilation in isolation from strings sugge
that these growth laws should hold. However, experime
@7# also reveal that the average monopole density dec
more rapidly in the presence of strings, with^n&;t23. It
appears that in order to account for this observation
theory presented here should be extended to consider
interactions between strings and monopoles@16#.

II. MODELS

In this section the O(n) model and the Landau–d
Gennes model of nematics are discussed. Since the fo
model is used as a guide in the treatment of the latter,
theory for ordering kinetics in the O(n) model is also re-
viewed. Initially, the structural features common to bo
models are emphasized. In later sections, the technical de
specific to the ordering of nematics will be discussed.

A. The O„n… model

In the O(n) model the evolution of the nonconserve
n-component order-parameter fieldcW is governed by the
time-dependent Ginzburg-Landau~TDGL! equation

]cW

]t
52

dF@cW #

dcW
. ~2.1!

The free energyF@cW # has the form

F@cW #5E ddr @ 1
2 ~¹cW !21V~c!#, ~2.2!

where the potentialV(c), expressed in terms ofc[ucW u, is
O(n) symmetric with a degenerate ground state at nonz
c5c0. In this model, as with the nematic liquid crystal, th
disordered high-temperature initial state is rendered unst
by a quench to a low temperature where the usual noise t
on the right-hand side of Eq.~2.1! can be ignored. Substitu
tion of Eq.~2.2! into Eq.~2.1! produces the explicit equatio
of motion

]cW

]t
5¹2cW 2

]V~c!

]cW
. ~2.3!

The evolution induced by Eq.~2.3! causescW to order and
assume a distribution that is far from Gaussian. To ma
analytic progress it is by now standard@1# to introduce a
mapping

cW 5sW ~mW ! ~2.4!

between the physical fieldcW and ann-component auxiliary
field mW with analytically tractable statistics. The mappingsW
is chosen to reflect the defect structure in the system
satisfies the Euler-Lagrange equation for a defect in equ
rium
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¹m
2 sW 5

]V~sW !

]sW
. ~2.5!

As shown below, Eq.~2.5! is also instrumental in treating th
nonlinear potential term in Eq.~2.3!. Defects correspond to
the nonuniform solutions of Eq.~2.5! that map onto the uni-
form solution far from the defect core. Since only the lowe
energy defects, those with unit topological charge, will s
vive until late times, the relevant solutions to Eq.~2.5! will
be of the form@2#

sW ~mW !5A~m!m̂, ~2.6!

wherem5umW u andm̂5mW /m. Thus the magnitude ofmW rep-
resents the distance away from a defect core and its orie
tion corresponds to the orientation of the order param
field at that point. This geometrical interpretation will lat
be exploited when the generalization of Eq.~2.5! is used to
choose the appropriate mapping, analogous to Eq.~2.6!, for
string defects in the nematic liquid crystal. The magnitude
mW grows as the characteristic defect separationL(t), becom-
ing large in the late-time scaling regime. Inserting Eq.~2.6!
into Eq. ~2.5! gives an equation forA, the order-paramete
profile around a defect@2#,

¹m
2 A2

n21

m2
A2

]V

]A
~A!50. ~2.7!

For smallm an analysis of Eq.~2.7! yields the linear depen
denceA(m);m, characteristic of a unit charge defect@18#.
For largem the amplitudeA approaches its ordered valu
A5c0 algebraically, which is a feature common to both t
O(n) model and the nematic.

The order-parameter correlation function is

C~rW,t !5^sW ~rW,t !•sW ~0,t !&5c0
2^m̂~rW,t !•m̂~0,t !&, ~2.8!

where the last equality holds for late times and to lead
order in 1/L. To evaluate the last average in Eq.~2.8! we
choosemW to be a Gaussian field with zero mean. This Gau
ian approximation forms the basis of almost all present a
lytical treatments of phase-ordering problems and has
much quantitative success in describing the correlation
these systems@1–3#. Theories wheremW is a non-Gaussian
field also exist@19,20#. In the Gaussian approximation th
order-parameter correlation function~2.8! can be related to
the normalized auxiliary field correlation functionf , defined
as

f ~rW,t ![
^mW ~rW,t !•mW ~0,t !&

^@mW ~0,t !#2&
. ~2.9!

The relation is@2,21#

C~rW,t !5c0
2F~rW,t !, ~2.10!

with

F5
n f

2p
B2F1

2
,
n11

2 GFF1

2
,
1

2
;
n12

2
; f 2G , ~2.11!
-
-
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where B is the beta function andF is the hypergeometric
function. In the late-time scaling regime the functionsF and
f can be expressed solely in terms of the scaled len
x5r /L(t) so thatF5F(x). In this regime the equation o
motion ~2.3! can be written as a nonlinear scaling equati
for F

xW•¹W xF1¹x
2F1

p

2m
f

]

] f
F50. ~2.12!

In the derivation of Eq.~2.12! the relation~2.5! is used to
replace the potential term in Eq.~2.3!, and then the Gaussia
identity

^@¹m
2 sW „mW ~rW,t !…#•sW „mW ~0,t !…&

52
n f~rW,t !

^@mW ~0,t !#2&

]

] f ~rW,t !
^sW „mW ~rW,t !…•sW „mW ~0,t !…& ~2.13!

is used to get the last term on the left-hand side of Eq.~2.12!.
The constantm enters through the definition of the scalin
lengthL:

L2~ t ![
p^@mW ~0,t !#2&

2nm
54t. ~2.14!

This is the well-known@2,21# growth lawL;t1/2 for phase
ordering in nonconserved vector systems.

Since the auxiliary fieldmW is smooth@15#, f is analytic for
small x. This implies, through an examination of Eq.~2.12!
in d spatial dimensions, that for smallx, F behaves like

F~x!511
p

4md
x2lnx1O~x2! ~2.15!

for n52 and

F~x!512
p

2md
x21

4

3m~d11!
A p

2md
x31O~x4!

~2.16!

for n53, the cases relevant to this paper. The nonanal
terms in F reflect the short-distance singularities in th
order-parameter field produced by the defects and lea
Porod’s law@22# power-law decay of the structure factor
large wave number. Thex2lnx term in Eq.~2.15! is charac-
teristic of string~or vortex! defects, while thex3 term in Eq.
~2.16! is due to monopole defects. For largex bothF and f
decay rapidly to zero. The eigenvaluem is determined nu-
merically by matching the short- and long-distance behav
of the solution of Eq.~2.12!. In this way the auxiliary field
correlation functionf is determined self-consistently alon
with F. In contrast, there is no such self-consistency in th
ries based on the Ohta-Jasnow-Kawasaki approxima
@10,23#. Values ofm at variousn andd for the O(n) model
have been determined@2#. The scaling functionsF of this
theory are in excellent agreement with the results of simu
tions @1,2#.



a

T

ys
m

t
s
in

e

th
n
n
s

ll
n

e-

he
-
ec

L

i

ble

t
tic
ole

m

opic
he
at

6846 56ROBERT A. WICKHAM
B. Nematic liquid crystals

The order parameter for a bulk nematic liquid crystal is
traceless, symmetric, 333 tensorQab , which measures the
anisotropy of physical observables in the nematic phase.
tensorQab has the general form@24#

Qab5A@ n̂an̂b2 1
3 dab#1 1

3 B@ ĝaĝb2ĥaĥb#. ~2.17!

The unit three-vectorsn̂, ĝ, andĥ form an orthonormal triad.
The amplitudesA andB are chosen to be non-negative.A is
a measure of the degree of uniaxial order in the liquid cr
tal; it is zero in the isotropic phase and nonzero in the ne
atic phase. Biaxiality in the liquid crystal is measured byB.
In the uniaxial nematic phaseB is zero everywhere excep
near the string cores. The description of nematics in term
Qab reduces to the Frank continuum theory of elasticity
terms of a directorn̂(rW,t) @25# whenA is set to its ordered
value andB50. In the phase-ordering scenario, where d
fects occur, all ofA, B, n̂, ĝ, and ĥ are space and time
dependent.

In the tensor formulation the director, which measures
average local molecular orientation in the nematic, is the u
eigenvector ofQab that corresponds to the largest eige
value. The unit eigenvectors and associated eigenvalue
Qab are

n̂↔ 2
3 A,

ĝ↔2 1
3 ~A2B!, ~2.18!

ĥ↔2 1
3 ~A1B!.

Since the nematic is uniaxial,B<3A and the director can be
identified with n̂. The tensor formulation respects the fu
RP2 symmetry of the uniaxial nematic since physical qua
tities, such as correlations, are written in terms of theQab

that are invariant under the local inversionn̂(rW,t)→2n̂(rW,t).
At a string coreB53A.0 and the eigensubspace corr
sponding to the largest eigenvalue 2A/3 is twofold degener-
ate. Thus, in the plane perpendicular toĥ, the tangent to the
string, the orientation of the director is ambiguous. At t
isotropic core of a monopoleA5B50 and all three eigen
values ofQab are degenerate so the orientation of the dir
tor is completely unspecified.

The dynamics of the nematic is governed by the TDG
equation forQab,

] tQab52
dF@Q#

dQab
1labTrQ, ~2.19!

with the Lagrange multiplierlab included to enforce the
traceless condition. The Landau–de Gennes free energy

F@Q#5E d3r @ 1
2 ~¹Q!21V~Q!#, ~2.20!

with the potential

V~Q!52 1
6 TrQ22 1

3 TrQ31 1
4 ~TrQ2!2. ~2.21!
he
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The coefficient of the quadratic term in Eq.~2.21! is chosen
to be negative so that the bulk isotropic phase is unsta
towards nematic ordering. The gradient term in Eq.~2.20! is
written within the equal-constant approximation@25#. Substi-
tution of the form~2.17! into Eq. ~2.21! results in a useful
expression for the potential as a function ofA andB:

V~A,B!52 1
9 A22 2

27 A31 1
9 A42 1

27 B21 1
81 B4

1 2
27 @AB21A2B2#. ~2.22!

A contour plot ofV(A,B) for A.0, B.0 is shown in Fig. 3.
There is a global isotropic maximum at (A,B)5(0,0), a
uniaxial minimum at (A,B)5(1,0), and a saddle a
(A,B)5(1/4,3/4). The minimum represents the bulk nema
phase, the isotropic maximum corresponds to the monop
core, and the saddle, withB53A, signifies the string core.

Substituting Eq.~2.20! into Eq. ~2.19! and using TrQ50
to calculate the Lagrange multiplier gives an explicit for
for the equation of motion

] tQab5¹2Qab2Pab , ~2.23!

with the nonlinear piece given by

Pab5~TrQ22 1
3 !Qab2@Q2#ab1

dab

3
TrQ2. ~2.24!

Static solutions to Eq.~2.23! satisfy the Euler-Lagrange
equation

¹2Qab5Pab . ~2.25!

The order-parameter correlation function is defined as

FIG. 3. Contour plot of the potential surfaceV(A,B) @Eq.
~2.22!# for the bulk nematic in the physical regionA.0, B.0. A is
the uniaxial amplitude andB is the biaxial amplitude. Darker
shades indicate lower regions on the potential surface. The isotr
maximum at (A,B)5(0,0) corresponds to a monopole core, t
saddle at (A,B)5(1/4,3/4) to a string core, and the minimum
(A,B)5(1,0) to the bulk uniaxial state.
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C~rW,t !5N^Tr@dQ~rW,t !dQ~0,t !#&, ~2.26!

where N5$^Tr@dQ(0,t)dQ(0,t)#&%21 is a normalization
factor anddQab5Qab2^Qab&. BothN and^Qab& are con-
stant at leading order in 1/t. Thus, at late times, Eq.~2.23!
can be written as an equation for the evolution of ord
parameter correlations

1
2 ] tC~rW,t !5¹2C~rW,t !2N^Tr@P~rW,t !dQ~0,t !#&.

~2.27!

Later, through a development that closely parallels that p
viously given for the O(n) model, it will be shown how Eqs
~2.25! and ~2.27! lead to a scaling equation for orde
parameter correlations in the nematic.

III. STRING DEFECTS IN THE NEMATIC

At late times the dominant defects in the bulk nematic
strings with topological charge 1/2. Many of the main fe
tures of phase ordering in the bulk nematic are described
the model containing strings that is presented in Sec. I
below.

A. Vortices in thin films

To begin, a model applicable to nematic thin films whe
the director is constrained to lie in a plane without break
the n̂→2n̂ symmetry is examined. By restricting the dire
tor to a plane, the intricacies of how to map the ord
parameter tensor onto an auxiliary field when the direc
rotates by onlyp about the vortex can be demonstrate
without the additional complication of biaxiality that appea
near the string core in bulk samples.

For a uniaxial thin-film nematic the order parameter is
232 traceless symmetric tensor

Qab5A@ n̂an̂b2 1
2 dab#, ~3.1!

where n̂ is the two-component director. In analogy to th
theory of the O(2) model, the defects are incorpora
through a mapping of the order-parameter tensor onto a t
component auxiliary field. The only defect species presen
late times are charge 1/2 point vortices with the property t
the director rotates by onlyp around the vortex. This prop
erty is essential in constructing the mapping. Conside
charge 1/2 vortex at the origin with the typical director co
figuration

n̂5cos1
2 f x̂1sin1

2 f ŷ, ~3.2!

wheref is the polar angle in thex-y plane. For future con-
venience we write the radial vector in thex-y plane assW and
define angles in terms ofŝ through

ŝ[~ ŝ1 ,ŝ2![~cosf,sin f!. ~3.3!

With the definitions~3.2! and~3.3!, the order-parameter ten
sor ~3.1! is @26#
-

e-

e
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Q5
A~s!

2 F ŝ1 ŝ2

ŝ2 2 ŝ1
G , ~3.4!

wheres5usWu. This form forQab , analogous to the mappin
~2.6! for the O(n) model, is a solution to the Euler-Lagrang
equation~2.25! written in terms ofs

¹s
2Qab5 P̃ab , ~3.5!

whereP̃ab has a slightly modified definition fromPab @Eq.
~2.24!# becauseQab is a 232 tensor:

P̃ab5~TrQ221/3!Qab2@Q2#ab1
dab

2
TrQ2. ~3.6!

Substituting Eq.~3.4! into Eq.~3.5! results in an equation fo
the amplitudeA:

¹s
2A2

A

s2
52

]U

]A
~A!. ~3.7!

From Eqs.~2.21! and ~3.4! the potentialU is given by

U~A!52
1

12
A21

1

16
A4. ~3.8!

An examination of Eq.~3.7! at smalls hasA;s, indicative
of charge 1/2 vortices@18#. At larges the amplitudeA alge-
braically approaches its ordered valueA5A2/3.

To treat many such vortices in a phase-ordering contexsW

in Eq. ~3.4! is taken to be a Gaussian fieldsW(rW,t) with zero
mean. As in the O(2) model,s represents the distance to th
nearest vortex, growing as the characteristic vortex spac
Lv(t) at late times. However, unlike in the O(2) model, th
director is not mapped directly ontosW: A 2p rotation of sW
about a vortex corresponds to a rotation of the director byp.

At late times, the amplitudeA approaches its ordere
value and from the definition~2.26! and Eq.~3.4! the order-
parameter correlation function is seen to be

C~rW,t !5^ŝ~rW,t !• ŝ~0,t !& ~3.9!

to leading order inLv
21 . This is just the O~2! correlation

function ~2.8! and is related tof , the correlation function for
the auxiliary fieldsW defined in analogy to Eq.~2.9!, through
Eqs. ~2.10! and ~2.11! for n52. In the scaling regime the
equation of motion~2.27! for C(rW,t) becomes Eq.~2.12! for
the O~2! scaling functionF, expressed in terms of the scale
lengthx5r /Lv(t). The lengthLv has the same definition a
the lengthL in Eq. ~2.14!, with mW replaced bysW. The path
from Eq. ~2.27! to Eq. ~2.12! is similar to that taken in the
O(2) case@2#. The Euler-Lagrange equation~3.5! is used to
replaceP̃ab occurring in the last term in Eq.~2.27!. The
resulting expression is evaluated using the Gaussian ide
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^Tr@¹s
2Q„sW~rW,t !…Q„sW~0,t !…#&

52
2 f ~rW,t !

^@sW~0,t !#2&

]

] f ~rW,t !
^TrQ@„sW~rW,t !…Q„sW~0,t !…#&,

~3.10!

analogous to Eq.~2.13!, and produces the last term on th
left-hand side of Eq.~2.12!.

Thus the scaling functionF for the order-parameter cor
relations and the growth lawLv(t);t1/2 for the nematic thin
film are exactly those of the two-dimensional O~2! model.
This correspondence, seen in simulations, can be simply
derstood as a consequence of the mapping of varia
f→2f between the two models@5,12#. This isomorphism is
relevant to experimental efforts that use constrained nema
to study coarsening in the two-dimensional O~2! models@27#

since it indicates that the existence of the localn̂→2n̂ sym-
metry does not affect the leading-order dynamics in the s
ing regime.

B. Strings in the bulk nematic

In addition to the complication of having a director co
figuration with a charge 1/2 geometry, strings in a bulk ne
atic have a biaxial core. The form~2.17! for Qab contains
the biaxiality that is required if an analytical solution to E
~2.25! is to be found. String defects enter the theory throu
the mapping of Eq.~2.17! onto a two-component auxiliary
field. To motivate the form for the mapping consider t
geometry of the director field around a charge 1/2 str
defect oriented along thez axis. Since locally the coordinat
system can always be chosen so that the string has this
ometry the following development is quite general. The
rectorn̂ is still given by Eq.~3.2!. The other members of th
orthonormal triad in Eq.~2.17! are

ĝ52sin1
2 f x̂1cos1

2 f ŷ, ~3.11!

ĥ5 ẑ. ~3.12!

With the notation~3.3! for the radial vectorsW in the x-y
plane, the order-parameter tensor~2.17! becomes

Q5
A~s!

2 F 1

3
1 ŝ1 ŝ2 0

ŝ2

1

3
2 ŝ1 0

0 0 2
2

3

G
1

B~s!

6 F 12 ŝ1 2 ŝ2 0

2 ŝ2 11 ŝ1 0

0 0 22
G . ~3.13!

This form forQab is a solution of Eq.~2.25! written in terms
of s,

¹s
2Qab5Pab , ~3.14!
n-
es

cs

l-

-

h

g

e-
-

provided

4¹s
2A2

~3A2B!

s2
26

]V

]A
50, ~3.15!

4

3
¹s

2B1
1

3

~3A2B!

s2
26

]V

]B
50, ~3.16!

where V(A,B) is given in Eq.~2.22!. Note that equations
~3.15! and~3.16! would be inconsistent had a uniaxial ansa
(B50) been assumed at the outset. For the potential~2.22!
these equations are degenerate@28# and reduce to a single
equation forA after the identificationB512A:

4¹s
2A2

~4A21!

s2
26

]V

]A
~A,12A!50. ~3.17!

At small s the solution to Eq.~3.17! is

A5 1
4 1cs, ~3.18!

B5 3
4 2cs, ~3.19!

wherec is a constant, determined numerically. At larges the
solution of Eq.~3.17! takes the form

A512
3

4s2
, ~3.20!

B5
3

4s2
. ~3.21!

As expected, the mapping~3.13! connects the biaxial saddl
point on the potential surfaceV(A,B), representing the string
core, to the uniaxial nematic minimum away from the stri
~see Fig. 3!. The linear behavior in Eqs.~3.18! and~3.19! at
smalls is that expected for charge 1/2 strings in the nema
Both the linear behavior near the core and the algebraic
laxation ~3.20! and ~3.21! to the bulk uniaxial state are see
in the numerical results of@13#.

Once again, to examine the statistical properties of
string defect tangle,sW is taken to be a Gaussian auxiliar
field with zero mean. The magnitudes grows as the charac
teristic string separationLs(t). Therefore, at late times,s is
large and the biaxial piece ofQab , with an amplitudeB
given by Eq.~3.21!, is suppressed. This is physically reaso
able since biaxiality occurs on length scales around the c
size, while the late-time scaling properties are dominated
physics at the much larger scale ofLs(t). At late times, when
A'1, the definition~2.26! and the mapping~3.13! show that
the order-parameter correlation function reduces to

C~rW,t !5^ŝ~rW,t !• ŝ~0,t !&, ~3.22!

which is the O~2! correlation function~2.8!. As before,
C(rW,t) is related tof (rW,t), the normalized correlation func
tion for the auxiliary fieldsW, by relations~2.10! and ~2.11!
with n52.
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The dynamical equation~2.27! for C(rW,t) reduces, in the
scaling regime, to Eq.~2.12! for F from the three-
dimensional O~2! model. Note that the spatial dimensionali
enters through the Laplacian operator in Eq.~2.12!. The
scaled length in this case isx5r /Ls(t) with Ls defined asL
in Eq. ~2.14!. The derivation of this correspondence parall
the steps taken in the O~2! model that lead to Eq.~2.12!. The
Euler-Lagrange equation~3.14! enables the nonlinear quan
tity Pab occurring in the last term of Eq.~2.27! to be re-
placed by¹s

2Qab . The resulting average is then evaluat
using Eq.~3.10! and produces the last term on the left-ha
side of Eq.~2.12!. The scaling resultLs;t1/2 is recovered for
the phase ordering of the bulk nematic. In Fig. 1 the theo
ical results forF in the three-dimensional O~2! model @2#
and theF determined in cell-dynamical simulations of th
bulk nematic@5# are compared. The agreement between
two is excellent. At short-scaled distancesF has the form
~2.15!, which is also seen in the simulations and is an in
cation that string defects are the dominant disordering ag
in the bulk nematic.

The theory is now structured so that many we
established phase-ordering results for the O~2! model @2,14#
can be applied to the bulk nematic. In particular, the str
line densityh is related to the auxiliary fieldsW, whose zeros
locate the positions of the strings, through@14,16,29#

h5d~sW !uvW u, ~3.23!

where the tangent to the string

vW 5¹s13¹s2 ~3.24!

points in the direction of positive winding number. The ca
culation performed in Appendix A shows that the avera
line density of string obeyŝh&;Ls

22;t21 for late times, in
accord with experiments@7#.

IV. MONOPOLES IN THE BULK NEMATIC

To address experiments that are designed to produce
pious amounts of monopoles at the quench@17#, a theory for
the ordering kinetics of bulk nematics is considered in wh
monopoles appear. The model consists of mapping the d
tor n̂ near a monopole directly onto a three-compon
Gaussian auxiliary fieldmW via n̂5m̂. Thus the order param
eter is

Qab5A~m!@m̂am̂b2 1
3 dab#. ~4.1!

Since the isotropic monopole core can be connected to
nematic minimum along theB50 line on the potential sur
face ~Fig. 3!, a biaxial piece does not appear in Eq.~4.1!.
Equation ~4.1! solves the Euler-Lagrange equation~2.25!
written in terms ofmW ,

¹m
2 Qab5Pab , ~4.2!

if the amplitudeA satisfies

¹m
2 A2

6

m2
A5

3

2

]V

]A
~A,0!. ~4.3!
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A similar result was obtained in@30# for equilibrium. For
smallm, Eq.~4.3! indicates thatA;m2 while for largem the
amplitudeA algebraically approaches its ordered value of
The m2 dependence at smallm indicates that Eq.~4.1! de-
scribes charge 1 monopoles in the nematic@18#. This is also
evident geometrically sincemW ~and thusn̂) is a radial vector
field near the monopole.

At late times, using Eq.~4.1! with A'1, the order-
parameter correlation function~2.26! is

C~rW,t !5 3
2 @^@m̂~rW,t !•m̂~0,t !#2&2 1

3 #. ~4.4!

In contrast to the string models considered earlier, the
pression~4.4! for the order-parameter correlation function
the monopole model is new. The Gaussian average in
~4.4! is computed in Appendix B. In the late-time scalin
regimeC(rW,t) can be written in terms of the scaled leng
x5r /Lm(t), whereLm(t) is the typical monopole separation
ThusC(rW,t)5F(x) with

F511
3

g3f 3
~sin21f 2g f ! ~4.5!

andg51/A12 f 2. The auxiliary field correlation functionf
is defined in Eq.~2.9!. The scaling functionF satisfies the
scaling equation~2.12! with Lm(t);t1/2. The development of
this result closely parallels that of the string case conside
earlier. The only difference between the scaling results
this model and those for the O~3! model is that the relation
betweenF and f is Eq. ~4.5! instead of Eq.~2.11!.

SincemW is smooth,f has a power series expansion that
analytic at smallx. By using this expansion in Eqs.~2.12!
and ~4.5!, the small-x behavior ofF is found to be

F~x!512
3p

2md
x21

3p2

4m~d11!
A p

2md
x31O~x4!.

~4.6!

The nonanalyticx3 term inF, also found in the O~3! model
~2.16!, is due to the presence of point monopole defec
Using a fourth-order Runge-Kutta scheme, the nonlinear
genvalue problem represented by Eqs.~2.12! and ~4.5! is
solved ford53. The eigenvalue ism51.273 06. . . , which
differs from the valuem50.5558 . . . for the O~3! model@2#.
The functionF is plotted in Fig. 2 along with the scaling
function for order-parameter correlations in the thre
dimensional O~3! model. Figure 2 also compares the ce
dynamical simulation data for the bulk nematic@5# to the
functionF @Eq. ~4.5!#. The functionF does not describe the
simulation data as well as the string model, showing dev
tions at short distances. These deviations are expected s
the structure of the theory at short distances~4.6! represents
the wrong defects~monopoles! instead of the correct one
~strings!.

Since the zeros ofmW locate the monopole cores, th
monopole number densityn can be expressed in terms of th
auxiliary field mW @14# as

n5d~mW ! udet~] imj !u, ~4.7!
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where the quantity between the absolute value signs is
Jacobian for the transformation from real-space coordin
to auxiliary field variables. From the development in@14# the
average monopole number density obeys^n&;Lm

23;t23/2.
This result holds only for monopole annihilation in the a
sence of strings, the case considered in this section. In
experiments of Chuanget al. @7#, where monopole annihila
tion occurred in the presence of strings, the average mo
pole density was observed to decay faster, with^n&;t23.

V. DISCUSSION

The dominant scaling behavior observed during order
in the bulk nematic is well described by the theory presen
here in which string defects are the major disordering age
The growth lawLs;t1/2 is recovered, leading to an averag
string line densitŷ h& that decays aŝh&;t21, as seen in
experiments@7#. The theoretically determined scaling for
for order-parameter correlations in the bulk nematic is sho
analytically to beexactlythat for the three-dimensional O~2!
model @2#, and this is in excellent agreement with the sim
lation results@5# ~Fig. 1!. This paper addresses the issue
biaxiality near the string cores and demonstrates that
irrelevant to the leading-order scaling properties of the s
tem. However, the theory is capable of being extended
the prescaling regime, where biaxiality may play a role in
dynamics.

The major accomplishment of this work is the explic
demonstration of the isomorphism between the late-stage
dering in the bulk nematic and the late-stage ordering in
three-dimensional O~2! model, within the Gaussian approx
mation. It is shown that, in the scaling regime, the ord
parameter equations of motion for the O~2! model ~2.1! and
the bulk nematic~2.19! produce the same scaling equati
~2.12! for the correlation function. The essential element
the present theory, which was missing in earlier theor
@10#, is the mapping~3.13!, which explicitly includes string
defects and makes a direct connection with the O~2! model.
As a consequence, results for the O~2! model, such as string
and vortex density correlations@14,31# or conservation laws
involving string densities@32#, can be directly applied to the
bulk nematic.

This paper also presents a model for bulk nematics
which monopoles appear. The model is applicable to sit
tions where monopole-antimonopole annihilations occur
isolation from string defects. Such scenarios have been r
ized experimentally@17#, and the data are suggestive of t
growth law Lm;t1/2 predicted by the theory. However, t
properly treat monopole dynamics in the presence of strin
theories that include interactions between string and mo
pole defects are required. This interesting aspect of the p
lem is under current investigation@16#.
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APPENDIX A

This appendix presents the calculation of the average
density for stringŝ h& for the O(n) model ind5n11 spa-
tial dimensions, defined as

^h&5^d~sW !uvW u&, ~A1!

with

va5
1

n!
eam1•••mn

en1•••nn
¹m1

sn1
•••¹mn

snn
. ~A2!

The form ~A2!, wheree is the fully antisymmetric tensor
generalizes the definition~3.24! for the tangent vector to a
string ind53. The one-point average~A1! can be written in
an integral form

^h&5E )
m51,n51

n11,n

djm
n uvW ~j!uG~j! ~A3!

in terms of

va~j!5
1

n!
eam1•••mn

en1•••nn
jm1

n1
•••jmn

nn ~A4!

and the one-point reduced probability distributionG(j),
given by

G~j!5K d~sW ! )
m51,n51

n11,n

d~jm
n 2¹msn!L . ~A5!

The Gaussian average in Eq.~A5! is straightforward to
evaluate by first writing thed functions in the integral rep-
resentation and then performing the resulting stand
Gaussian integrals. One finds

G~j!5
1

@2pS0~ t !#n/2

1

@2pS~2!#n~n11!/2

3expS 2 (
m51,n51

n11,n
~jm

n !2

2S~2! D , ~A6!

with the definitions

S0~ t !5
1

n
^@sW~0,t !#2&, ~A7!

S~2!5
1

n~n11! (
m51,n51

n11,n

^@¹msn#2&. ~A8!

In this theoryS(2)51/(n11) @16#. Substitution of Eq.~A6!
into Eq. ~A3! produces the final form for the average lin
density of string:

^h&5CnF S~2!

pS0~ t !G
n/2

, ~A9!
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with the n-dependent constantCn defined as

Cn5
1

pn~n11!/2E )
m51,n51

n11,n

djm
n uvW ~j!u

3expS 2 (
m51,n51

n11,n

~jm
n !2D . ~A10!

For n52 it can be shown thatC251 @16#. SinceS0(t);t at
late times, the average line density of string scales like

^h&;t2n/2. ~A11!

In particular, forn52, ^h&;t21.

APPENDIX B

This appendix outlines the evaluation of the average

A5^@m̂~rW,t !•m̂~0,t !#2& ~B1!

appearing in the correlation function~4.4! for the monopole
model. For ann-component GaussianmW field, the averageA
can be written in the integral form

A5E dnx1dnx2

~xW1•xW2!2

~x1!2~x2!2
F~xW1 ,xW2! ~B2!

in terms of the two-point reduced probability distribution@2#

F~xW1 ,xW2!5F g

2pGn

expS 2
g2

2
~xW1

21xW2
222 f xW1•xW2! D ,

~B3!

where the auxiliary field correlation functionf is defined in
Eq. ~2.9! andg51/A12 f 2. The identity

1

~x1!2
52E

0

`

dr1r 1exp2x1
2r 1

2 ~B4!

allows A to be written as a Gaussian integral

A5 lim
l→1

E
0

`

dr1r 1E
0

`

dr2r 2

]2

]l2

3E dnx1dnx2 F̃l~xW1 ,xW2 ,r 1 ,r 2!, ~B5!

with
ic

ct
F̃l~xW1 ,xW2 ,r 1 ,r 2!5
4

f 2g4F g

2p Gn

exp2S r 1
21

g2

2 D x1
2

2S r 2
21

g2

2 D x2
21g2f l xW1•xW2 . ~B6!

The integrals overxW1 and xW2 in Eq. ~B5! are readily done.
After differentiating with respect tol and settingl51, the
integral overr 1 is performed. After a change of variable
y5(r 2)2, the following integrals remain:

A522~n/211!E
0

`

dyS y1
g2

2 D 21S y1
1

2D 2n/2

122~n/212!ng2f 2E
0

`

dyS y1
g2

2 D 21S y1
1

2D 2~n/211!

.

~B7!

These integrals can be expressed in terms of hypergeom
functionsF @33#, giving

A512
lng

g221
for n52, ~B8!

A511
~n21!

g2~n22!
F 1

g2f 2
~F@1,1;n/2; f 2#21!21G

for n.2. ~B9!

In particular, forn53, Eq. ~B9! gives

A511
2

g2F 1

g2f 3
~g sin21f 2 f !21G , ~B10!

which leads to Eq.~4.5! for F in the nematic with mono-
poles.
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