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Phase ordering in bulk uniaxial nematic liquid crystals

Robert A. Wickham
The James Franck Institute and Department of Physics, The University of Chicago, Chicago, lllinois 60637
(Received 16 July 1997

The phase-ordering kinetics of a bulk uniaxial nematic liquid crystal is addressed using technigues that have
been successfully applied to describe ordering in th@)Qtiodel. The method involves constructing an
appropriate mapping between the order-parameter tensor and a Gaussian auxiliary field. The mapping accounts
for both the geometry of the director about the dominant charge 1/2 string defects and biaxiality near the string
cores. At late times following a quench, there exists a scaling regime where the bulk nematic liquid crystal
and the three-dimensional(2) model are found to be isomorphic, within the Gaussian approximation. As a
consequence, the scaling function for order-parameter correlations in the nematic liquid crgseadtigthat
of the O2) model and the length characteristic of the strings growsasThese results are in accord with
experiment and simulation. Related models dealing with thin films and monopole defects in the bulk are
presented and discuss¢81063-651X97)06612-9

PACS numbdps): 61.30—~v, 05.70.Ln, 64.60.Cn

. INTRODUCTION method used to treat the ordering kinetics of theOfodel,
the nematic order-parameter tensor is mapped onto a two-

ost phase-ordering systems studied to date support onlyomponent Gaussian auxiliary fie]@]. The string defects
one type of topologically stable defect specjés-3]. One  explicitly appear in the construction of the mapping. As dis-
example is the Qf) model with ann-component vector or- cussed below, this approach has several advantages over an
der parameter. In three spatial dimensions, the defectgarlier, seminumerical theory by Bray al.[10].
formed at the quench are linelike strings for 2 and point- The auxiliary field approach is first applied to the straight-
like monopo|es forn=3. Phase Ordering in bulk uniaxial forward case of phase Ordering in nematic films Containing
nematic liquid crystal§nematicg provides the simplest sce- charge 1/2 vo_rtices, which have been studied_ in simulations
nario in which two defect species, monopoles and strings, are] and experiment11]. As in the bulk nematic, the map-
topologically stable. The stability of monopoles derives fromPiNg iS constructed to account for the rotation of the director

. ~o . by only 7= about the core of the defect. Once this is done the
the ((3) symmetry of the nematic directeu(r,t). The addi- theory reveals that phase ordering in the nematic film is

tional invariance under the local inversiafir,t)——n(r.,t)  equivalent to phase ordering in the two-dimension&?)O
allows the nematic to support stable charge 1/2 disclinatiomodel examined previousi2]. This is not surprising since
lines (Strings) [4] The issue of which defect Species domi- the two systems are known to be isomorp[ﬁ;lz:l_ Con-
nates the dynamics in bulk nematics at late timésllowing  structing a theory for the bulk nematic is more challenging
a quench has recently been settled. Cell-dynamical simulasince the order-parameter tensor must include a biaxial piece
tions using spin models of bulk nematif5,6] have com-  near the core of the string. In the earlier theory of Beayl.
puted the order-parameter correlation function and found if10] this point was not addressed since there they used a
to be indistinguishable from that of the(® model and con-  “hard-spin” approximation for the dynamics of the nematic.
sistent with a string-dominated late-time scaling regime. ExHowever, the necessity of having a biaxial core region when
periments by Chuanet al.[7] directly imaged the bulk nem- treating the full equations has been noted in the numerical
atic, revealing an intricate, evolving defect tangle. Whilework of Schopohl and Sluckifil3] on bulk nematic string
both types of defect were observed, the strings dominated @efects in equilibrium. The present theory successfully incor-
late times. The length scales characterizing the typical porates biaxiality and clarifies the role that it plays in the
separation of the strings was seen to grow.ast"? while  coarsening of the bulk nematic. The theory recovers the
the average line density of string»n) decayed like growing lengthl~tY? seen in simulationf5,6] and experi-
(n)~Lg%~t"*. The study of ordering in nematics is also of ments[7]. In the scaling regime, the order-parameter corre-
interest to cosmologis{s,9] since similar processes involv- lation function for the bulk nematic is found to texactly
ing cosmic string and monopole evolution, thought to occutthat of the three-dimensional (2) model [2], in excellent
in the early universe, may be responsible for structure foragreement with simulation$] (Fig. 1). Although the theo-
mation. retical results of Brayet al. [10] suggested agreement be-
In this paper a theory is presented that describes the domiween the correlation function for the bulk nematic and the
nant scaling behavior of the bulk nematic in terms of aO(2) model, they were unable to demonstrate an exact
string-dominated late-time regime. Generalizing a successfdquivalence since their theory was not based on a mapping
that explicitly contained strings. The major accomplishment
of this work is to analytically demonstrate the isomorphism
*Present address: Department of Physics, University of Floridabetween the dynamics of the bulk nematic and the dynamics
Gainesville, FL 32611. of the three-dimensional @) model, within the Gaussian
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10 . . (Fig. 2. The characteristic monopole spacihg, grows as
Ln~tY? and leads to a decaying average monopole density

0.8 7 (ny~L,.3~t~32 Experimentg17] that examine monopole-
antimonopole annihilation in isolation from strings suggest

0.6 b that these growth laws should hold. However, experiments

F(x) [7] also reveal that the average monopole density decays

04 r 1 more rapidly in the presence of strings, with)~t~3. It
appears that in order to account for this observation the

0.2 . theory presented here should be extended to consider the
interactions between strings and monopdiEs).

0.0 L 1

0 1 2 3 4

- Il. MODELS

In this section the Q) model and the Landau—de
tions as a function of the scaled length-r/L(t) for the three- Genneg model of nemz_itlcs_ are discussed. Since the former
dimensional @) model [2] is represented by the solid line. As model is used QS . 9_“'d_e 'n_ the treatment of.the latter, the
shown in Sec. Ill B, this function exactly describes order-parametetn€ory for ordering kinetics in the @f model is also re-

correlations in bulk nematics. The cell-dynamical simulation data ofviewed. Initially, the structural features common to both
Blundell and Bray[S] for this quan“ty in a bulk nematic are also mOde|S are emphaSIzed In Iater SG‘C'[IOI"IS, the teChnlca| detaI|S

shown, as circles. The abscissa of the simulation data is scaled so 8B€cific to the ordering of nematics will be discussed.
to give the best fit to the theory.

FIG. 1. The scaling functiotF(x) for order-parameter correla-

A. The O(n) model
approximation. Through this isomorphism, the well-

developed theory for the @) model[2,14,19 can be ap- In the O() model the evolutiog of the nonconserved,
plied directly to the nematic. In particular, this theory pre-N-component order-parameter fieldl is governed by the
dicts that the average line density of string decays adime-dependent Ginzburg-Land&liDGL) equation
(n)~Lg2~t"1 [14,16, in accord with the experiments of - -
Chuanget al.[7]. 07_‘/’ __ SFLY]

Although strings are generically present in bulk nematics, at 5(], '
certain choices of experimental setup and sample material
will produce copious amounts o_f monopoles at the quenchpe free energy?[zZ] has the form
[17]. The theory of Brayet al.[10] is unable to address these
experiments since in that theory there is no signature for . R
monopoles. However, within the framework presented below F[w]=f dor [2(V )2+ V()] (2.2
it is relatively straightforward to develop a theory of nemat-
ics in which monopoles appear. In this theory the order- . _ S
parameter correlation function is found to be similahot  Where the potential/(y), expressed in terms af=|4], is

not exactly that for the three-dimensional(8) model[2] O(n) symmc_etric with a degenerate gml.md. st_ate at nonzero
=iy In this model, as with the nematic liquid crystal, the

1.0 , , disordered high-temperature initial state is rendered unstable
by a quench to a low temperature where the usual noise term
o0s - ] on the right-hand side of E¢2.1) can be ignored. Substitu-
tion of Eq.(2.2) into Eq.(2.1) produces the explicit equation

of motion

(2.9

06 - -

1 W, N
— =V ra (2.9

02 - b

The evolution induced by Eq2.3) causes) to order and
00 L N . . assume a distribution that is far from Gaussian. To make
analytic progress it is by now standakdl] to introduce a

mapping

FIG. 2. The scaling functiorf(x) as a function of the scaled
lengthx=r/L(t) for order-parameter correlations in the theory for lZ: (}( rﬁ) (2.4
monopoles in bulk nematics, discussed in Sec. IV, is represented by
the lower curve. The upper curve is the scaling function for order- . . -
parameter correlations in the three-dimension&8)Gnodel from beM%en the physical fielg- and ann-component aux'“ajy
[2]. The circles are the cell-dynamical simulation data of Blundellfield m with analytically tractable statistics. The mappiag
and Bray[5] for Fin a bulk nematic. The abscissa of the simulation iS chosen to reflect the defect structure in the system and
data is scaled so as to give the best fit to the theory for monopolesatisfies the Euler-Lagrange equation for a defect in equilib-
in bulk nematics. rium
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. V(o) whereB is the beta function ané is the hypergeometric
Vzma'z —. (2.5  function. In the late-time scaling regime the functicgisnd
do f can be expressed solely in terms of the scaled length

x=r/L(t) so thatF=F(x). In this regime the equation of
motion (2.3) can be written as a nonlinear scaling equation
for F

As shown below, Eq¢(2.5) is also instrumental in treating the
nonlinear potential term in Eq2.3). Defects correspond to
the nonuniform solutions of Eq2.5) that map onto the uni-
form solution far from the defect core. Since only the lowest-
energy defects, those with unit topological charge, will sur- )Z.V*X];Jrvi}q_ lf i]-'=0. (2.12

vive until late times, the relevant solutions to Eg.5) will 2 of

be of the form[2]
. R In the derivation of Eq(2.12 the relation(2.5) is used to
o(m)=A(m)ym, (2.6 replace the potential term in E(.3), and then the Gaussian

. L . identity
wherem=|m| andm=m/m. Thus the magnitude ah rep-
resents the distance away from a defect core and its orient V%&(rﬁ(ﬂt))]«&(rﬁ(O,t)))
tion corresponds to the orientation of the order paramete

field at that point. This geometrical interpretation will later nf(r,t) 9 . . . o
be exploited when the generalization of Ef.5) is used to =—— 5 —(a(m(r,t))- c(m(0}))) (2.13
choose the appropriate mapping, analogous to(E6), for (Im(01)]%) af(r,1)

string defects in the nematic liquid crystal. The magnitude of

m grows as the characteristic defect separakir), becom- S Used to get the last term on the left-hand side of(Bd.2.
ing large in the late-time scaling regime. Inserting E2}6) The constanfu enters through the definition of the scaling

into Eq. (2.5 gives an equation foA, the order-parameter lengthL:
profile around a defed®], -
, . m{([mOn]%)
, -1 L= =g =t (2.14
ViA= A= A (A=, 2.7

_ _ _ This is the well-knowr{2,21] growth law L ~t? for phase
For smallm an analysis 0f_Eq(2.7) yleIQS the linear depen- ordering in nonconserved vector systems.
denceA(m)~m, characteristic of a unit charge def¢¢8]. Since the auxiliary fieldn is smootH 15], f is analytic for
For largem the amplitudeA approaches its ordered value gy a1 x. This implies, through an examination of E@.12)

A= i) algebraically, which is a feature common to both the;, 4 spatial dimensions, that for sma| F behaves like
O(n) model and the nematic.

The order-parameter correlation function is

o
. ... . F(x)=1+ —x2Inx+O(x?) (2.19
C(r,H)=(a(r,t)-a(0)) = y2(M(r,t) - m(01)), (2.8 4ud

where the last equality holds for late times and to leadingor n=2 and
order in 1L. To evaluate the last average in HG.8) we
choosem to be a Gaussian field with zero mean. This Gauss- T 4 T
i imati i F(x)=1- X2+ x3+0(x*%)
ian approximation forms the basis of almost all present ana- 2ud 3u(d+1) V2ud
lytical treatments of phase-ordering problems and has had (2.19

much quantitative success in describing the correlations in

these systempl—3]. Theories wheren is a non-Gaussian for n=3, the cases relevant to this paper. The nonanalytic
field also exist19,20. In the Gaussian approximation the terms in F reflect the short-distance singularities in the
order-parameter correlation functi¢@.8) can be related to order-parameter field produced by the defects and lead to
the normalized auxiliary field correlation functidn defined  Porod's law[22] power-law decay of the structure factor at
as large wave number. The?Inx term in Eq.(2.15 is charac-
o teristic of string(or vortex defects, while the® term in Eq.
- (m(r,t)-m(0y)) (2.16) is due to monopole defects. For largéoth F and f
f(r.t)= ([n?(o,t)]z) ' decgy rapidly to zero. The eigenvalyeis dgtermined nu-
merically by matching the short- and long-distance behaviors
The relation ig2,21] of the solution of Eq(2.12. In this way the auxiliary field
correlation functionf is determined self-consistently along
C(r,t)=y2F(r 1), (2.10  with F. In contrast, there is no such self-consistency in theo-
ries based on the Ohta-Jasnow-Kawasaki approximation
with [10,23. Values ofu at variousn andd for the O(n) model
have been determing@]. The scaling functionsF of this
n+2 2 2.19) theory are in excellent agreement with the results of simula-
' ' tions[1,2].

(2.9
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B. Nematic liquid crystals 1.0
The order parameter for a bulk nematic liquid crystal is a

traceless, symmetric,>83 tensorQ,z, which measures the "
anisotropy of physical observables in the nematic phase. The :
tensorQ,; has the general forrj24]

~ - AEES 0.6

QaﬁzA[nan,B_%5aﬁ]+%B[gagB_hahﬂ]' (210 B
The unit three-vectors, g, andh form an orthonormal triad. 0
The amplitude#\ andB are chosen to be non-negativeis ’
a measure of the degree of uniaxial order in the liquid crys-
tal; it is zero in the isotropic phase and nonzero in the nem- 0.2
atic phase. Biaxiality in the liquid crystal is measuredBy ’
In the uniaxial nematic phad® is zero everywhere except
near the string cores. The description of nematics in terms of 0.0
.0 0.5 1.0 1.

Co

N

Q. reduces to the Frank continuum theory of elasticity in 0 5
terms of a directon(r,t) [25] whenA is set to its ordered

value andB=0. In the ptlasAe—orderAing scenario, where de- A

fects occur, all ofA, B, n, g, and h are space and time

dependent. FIG. 3. Contour plot of the potential surfacé(A,B) [Eq.

In the tensor formulation the director, which measures th&2.22] for the bulk nematic in the physical regién>0,B>0. A is
average local molecular orientation in the nematic, is the unithe uniaxial amplitude and is the biaxial amplitude. Darker
eigenvector OanB that corresponds to the largest eigen_shades indicate lower regions on the potential surface. The isotropic

value. The unit eigenvectors and associated eigenvalues Bfaximum at f,B)=(0,0) corresponds to a monopole core, the
Q 5 are saddle at A,B)=(1/4,3/4) to a string core, and the minimum at
(23

(A,B)=(1,0) to the bulk uniaxial state.
- 2
Ne— 3 A, - . . .
The coefficient of the quadratic term in EQ.21) is chosen
- to be negative so that the bulk isotropic phase is unstable
—~—%(A—B) (2.18 i i i ; i
g 3 ' towards nematic ordering. The gradient term in Ej20 is
. written within the equal-constant approximati@b]. Substi-
he—-%(A+B). tution of the form(2.17) into Eq. (2.21) results in a useful
expression for the potential as a functionfdfand B:
Since the nematic is uniaxidB<3A and the director can be

identified with n. The tensor formulation respects the full V(AB)=— 5 A’~ Z A%+ GA*— 5 B?+ 5; B*
RP? symmetry of the uniaxial nematic since physical quan- , b oo
tities, such as correlations, are written in terms of @ig; + 33 [AB“+AB~]. (2.22

that are invariant under the local inversiofr,t)— —n(r,t).
At a string coreB=3A>0 and the eigensubspace corre-
sponding to the largest eigenvalué&/3 is twofold degener-

ate. Thus, in the plane perpendicularfiothe tangent to the

A contour plot ofV(A,B) for A>0,B>0 is shown in Fig. 3.
There is a global isotropic maximum afAB)=(0,0), a
uniaxial minimum at A,B)=(1,0), and a saddle at

. ; . ; X X (A,B)=(1/4,3/4). The minimum represents the bulk nematic
_strmg, _the orientation of the director is amblguous._At thephase, the isotropic maximum corresponds to the monopole
isotropic core of a monopol&=B=0 and all three eigen- o anq the saddle, with=3A, signifies the string core.
values ofQ,z are degenerate so the orientation of the direc- Substituting Eq(2.20 into Eq. (2.19 and using TQ=0

tor is completely unspecified. to calculate the Lagrange multiplier gives an explicit form
The dynamics of the nematic is governed by the TDGL¢or the equation of ?notign pierg P

equation forQ,,
atQaB:VZQaB_ Pale (223

SF[Q]
9Qap=" 8Qup FhapTrQ, 219 with the nonlinear piece given by
with the Lagrange multiplien,; included to enforce the s 1 ) Oapr 5
traceless condition. The Landau—de Gennes free energy is Pap=(TrQ"=3)Qup=[Q%lap+ TTrQ . (229
F[Q]:j d3r [L(VQ)2+V(Q)], (2.20 Static solutions to Eq(2.23 satisfy the Euler-Lagrange
equation
with the potential VZQaBZ Poag- (2.25

V(Q)=— £TrQ?— 1TrQ3+ % (TrQ?2.  (2.2)  The order-parameter correlation function is defined as
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S1 521

S, —S;

C(r,1) = MTH{ 5Q(r,1) 5Q(01)]), (2.26 o

5 (3.9

where N={(Tr[ 8Q(0,t) 5Q(0;)])} ! is a normalization
factor andéQ,5=Q,s—(Q,p)- Both N and(Q,z) are con- .
stant at leading order in tL/Thus, at late times, Eq2.23  wheres=|s|. This form forQ,,z, analogous to the mapping
can be written as an equation for the evolution of order{2.6) for the O() model, is a solution to the Euler-Lagrange
parameter correlations equation(2.25 written in terms ofs

%atC(F,t)=VZC(F,t)—N(Tr[P(F,t)éQ(O,t)]}.( V2Qus=P.p, (3.5

2.27)
Later, through a development that closely parallels that pre?/heréPas has a slightly modified definition fror,, s [Eq.
(2.24)] becaus€ .4 is a 2xX 2 tensor:

viously given for the Of) model, it will be shown how Egs.
(2.25 and (2.27 lead to a scaling equation for order-

O . _ 5,
parameter correlations in the nematic. B s (TrQ— 13Quy—[Qupt TﬁTrQZ. 3.6

Ill. STRING DEFECTS IN THE NEMATIC

. . ) . Substituting Eq(3.4) into Eqg.(3.5) results in an equation for
At late times the dominant defects in the bulk nematic argy o amplitugdeé(\]'( ) a.3.9 q

strings with topological charge 1/2. Many of the main fea-
tures of phase ordering in the bulk nematic are described by
the model containing strings that is presented in Sec. Il B A U

2 ) ——
beIOW. VSA 82 2(7A (A) (37)
A. Vortices in thin films From Egs.(2.21) and(3.4) the potentialU is given by
To begin, a model applicable to nematic thin films where
the director is constrained to lie in a plane without breaking 1 1
T _ ) . . U(A)=— =A%+ — A% (3.9
then— —n symmetry is examined. By restricting the direc- 12 16

tor to a plane, the intricacies of how to map the order-
parameter tensor onto an auxiliary field when the directory examination of Eq(3.7) at smalls hasA~s, indicative

rotates by onlys about the vortex can be demonstrated, t charge 1/2 vorticefl8]. At larges the amplitudeA alge-

without the additional complication of biaxiality that appears braically approaches its ordered valie: \2/3

near the string core in bulk samples. . . o >
For a uniaxial thin-film nematic the order parameter is a 1 {réat many such vortices in a phase-ordering congext,

2X 2 traceless symmetric tensor in Eq. (3.4) is taken to be a Gaussian fiedr,t) with zero
mean. As in the O(2) modes, represents the distance to the
QaﬁzA[ﬁaﬁB— %5a3], (3.1  nearest vortex, growing as the characteristic vortex spacing

L,(t) at late times. However, unlike in the O(2) model, the

wheren is the two-component director. In analogy to the director is not mapped directly onta A 27 rotation ofs
theory of the O(2) model, the defects are incorporatedibOUt a vortex corresponds to a rotation of the directotrby
through a mapping of the order-parameter tensor onto a two- At late times, the amplitudeé\ approaches its ordered
component auxiliary field. The only defect species present a¢@lue and from the definitio(2.26) and Eq.(3.4) the order-
late times are charge 1/2 point vortices with the property thaParameter correlation function is seen to be

the director rotates by onlyr around the vortex. This prop-

erty is essential in constructing the mapping. Consider a C(r,t)=(s(r,t)-s(0})) (3.9
charge 1/2 vortex at the origin with the typical director con-

figuration to leading order inL . This is just the @) correlation

function (2.8) and is related td, the correlation function for
the auxiliary fields defined in analogy to Eq2.9), through

) ) Egs. (2.10 and (2.1) for n=2. In the scaling regime the
where ¢ is the polar angle in th&-y plane. For futur§ con- equation of motion(2.27) for C(F,t) becomes Eq(2.12 for
venience we write the radial vector in they plane ass and  the (2) scaling function, expressed in terms of the scaled

N=cos; ¢ x+sink ¢y, (3.2

define angles in terms af through lengthx=r/L,(t). The lengthL, has the same definition as
the lengthL in Eq. (2.14, with m replaced bys. The path
S=(S1,5,)=(C0S ¢,sin ¢b). (3.3  from Eq.(2.27) to Eq.(2.12 is similar to that taken in the

0(2) casq2]. The Euler-Lagrange equatidB.5) is used to
With the definitions(3.2) and(3.3), the order-parameter ten- replace'ﬁaﬁ occurring in the last term in Eq2.27). The
sor (3.1 is [26] resulting expression is evaluated using the Gaussian identity



6848 ROBERT A. WICKHAM 56

(TIVZQ(S(F.)Q(S(0))]) provided
- 2f(r 1) - - 4V2A-— BA—B) —6ﬂ=o, (3.19
([s(0O) 1% af(F,t)<TrQ[(s(r't))Q(S(OI))D’ ¢ "
349 dyg LOATBL NV (3.16
analogous to Eq(2.13, and produces the last term on the 3°° 3 & B '

left-hand side of Eq(2.12.

Thus the scaling functiotF for the order-parameter cor- Where V(A,B) is given in Eq.(2.22. Note that equations
relations and the growth law, (t)~t*? for the nematic thin  (3.19 and(3.16 would be inconsistent had a uniaxial ansatz
film are exactly those of the two-dimensiona(ZD model.  (B=0) been assumed at the outset. For the pote(®iad
This correspondence, seen in simulations, can be simply urihese equations are degenerg28] and reduce to a single
derstood as a consequence of the mapping of variablegguation forA after the identificatioB=1—A:
¢—2¢ between the two mode[$,12]. This isomorphism is
relevant to experimental efforts that use constrained nematics AV2A— (4A—1) _ Gﬂ(A 1-A)=0 (3.17)
to study coarsening in the two-dimensionaPPmodels[27] s 2 dAN ' ’

since it indicates that the existence of the latat —n sym-
metry does not affect the leading-order dynamics in the scalAt small s the solution to Eq(3.17) is
ing regime.
A= 1 +cs, (3.18
B. Strings in the bulk nematic

In addition to the complication of having a director con- B=3-cs (3.19
figuration with a charge 1/2 geometry, strings in a bulk nem- ) ) )
atic have a biaxial core. The fon2.17) for Q,s contains wher_ec is a constant, determined numerically. At lasgythe
the biaxiality that is required if an analytical solution to Eq. solution of Eq.(3.17) takes the form
(2.25 is to be found. String defects enter the theory through
the mapping of Eq(2.17) onto a two-component auxiliary A1 i (3.20
field. To motivate the form for the mapping consider the T 482’ :
geometry of the director field around a charge 1/2 string
defect oriented along theaxis. Since locally the coordinate
system can always be chosen so that the string has this ge- B= —. (3.2
ometry the following development is quite general. The di- 4s?
rectorn is still given by Eq.(3.2). The other members of the ) o
orthonormal triad in Eq(2.17) are As_ expected, the mappn‘(@.lfa) connects the t_)|aX|aI sad_dle
point on the potential surfadé&(A,B), representing the string
g=—sint ¢ x+cosk ¢y, (3.1)  core, to the uniaxial nematic minimum away from the string
(see Fig. 3 The linear behavior in Eq$3.18 and(3.19 at
smalls is that expected for charge 1/2 strings in the nematic.
Both the linear behavior near the core and the algebraic re-
laxation(3.20 and(3.21) to the bulk uniaxial state are seen
in the numerical results dfL3].
Once again, to examine the statistical properties of the

h=z. (3.12

With the notation(3.3) for the radial vectors in the X-y
plane, the order-parameter teng@rl?) becomes

-1 . . . string defect tangles is taken to be a Gaussian auxiliary
§+31 S7) 0 field with zero mean. The magnitudegrows as the charac-
teristic string separatiohg(t). Therefore, at late times, is
Al - 1. large and the biaxial piece @,z, with an amplitudeB

given by Eq.(3.21), is suppressed. This is physically reason-
able since biaxiality occurs on length scales around the core

2
0 0 - = size, while the late-time scaling properties are dominated by
o 3. physics at the much larger scalelaft). At late times, when
- - A~1, the definition(2.26) and the mapping3.13 show that
1-s, -s, O : :
B(s) ) - the order-parameter correlation function reduces to
+T -s, 1+4s; O (3.13 ) o
0 0o -2 C(r,t)=(s(r,t)-s(0t)), (3.22

This form forQ,, s is a solution of Eq(2.25) written in terms which is the @2) correlation function(2.8). As before,
of s, C(r,t) is related tof (r,t), the normalized correlation func-

, tion for the auxiliary fields, by relations(2.10 and (2.11)
VSQaﬁ: Pab’! (314) with n=2.
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The dynamical equatiof2.27) for C(r,t) reduces, in the A similar result was obtained ip30] for equilibrium. For
scaling regime, to Eq.2.12 for F from the three- smallm, Eq.(4.3) indicates thaA~m? while for largem the
dimensional @) model. Note that the spatial dimensionality @mplitudeA algebraically approaches its ordered value of 1.
enters through the Laplacian operator in Eg.12. The  The m” dependence at smath indicates that Eq(4.1) de-
scaled length in this case ¥s=r/L4(t) with L defined ai. ~ Scribes charge 1 monopoles in the nempt@]. This is also
in Eq. (2.14). The derivation of this correspondence parallelsevident geometrically since (and thusn) is a radial vector
the steps taken in the(® model that lead to Eq2.12. The  field near the monopole.

Euler-Lagrange equatiof8.14) enables the nonlinear quan- At late times, using Eq(4.1) with A=~1, the order-
tity P, occurring in the last term of Eq2.27 to be re-  parameter correlation functiaf2.26 is

placed byVﬁQaB. The resulting average is then evaluated

using Eq.(3.10 and produces the last term on the left-hand C(r,t)= 3[([m(r,t)-m(0)]?) - £]. (4.9

side of Eq.(2.12. The scaling result s~t*2is recovered for

the phase ordering of the bulk nematic. In Fig. 1 the theoretin contrast to the string models considered earlier, the ex-
ical results forF in the three-dimensional @) model [2] pression(4.4) for the order-parameter correlation function in
and theF determined in cell-dynamical simulations of the the monopole model is new. The Gaussian average in Eq.
bulk nematic[5] are compared. The agreement between thé€4.4) is computed in Appendix B. In the late-time scaling
two is excellent. At short-scaled distanc&shas the form  regime C(r,t) can be written in terms of the scaled length
(2.19, which is also seen in the simulations and is an indi-x=r/L__(t), whereL (t) is the typical monopole separation.
cation that string defects are the dominant disordering agep]thusC(F £) = F(x) with

in the bulk nematic. '

The theory is now structured so that many well- 3
established phase-ordering results for th@)G@nodel[2,14] F=1+ ?(Sinflf_ f) (4.5
can be applied to the bulk nematic. In particular, the string f

line density7 is related to the auxiliary field, whose zeros

locate the positions of the strings, throuigi#,16,29 and y=1/y1—f2. The auxiliary field correlation functiof
is defined in Eq(2.9). The scaling functionF satisfies the
n=38(5)|a|, (3.23  scaling equatioti2.12 with L ,,(t)~tY2 The development of
this result closely parallels that of the string case considered
where the tangent to the string earlier. The only difference between the scaling results for
R this model and those for the(8 model is that the relation
0=Vs;XVs, (3249 petweenF andf is Eq. (4.5 instead of Eq(2.11).

points in the direction of positive winding number. The cal- SINcém is smooth,f has a power series expansion that is

culation performed in Appendix A shows that the average?nalytic at smalk. By using this expfansign inqu$2.12)
line density of string obeyéry)~Lg 2~t~* for late times, in  2nd (4.9, the smalix behavior of#is found to be

accord with experiments7].

1 37 2, 372 T 34 O(x*
FOO=1= o > T Zaar 1) N 2pa X TOOD:
4.6

IV. MONOPOLES IN THE BULK NEMATIC

To address experiments that are designed to produce co-
pious amounts of monopoles at the queftH, a theory for ~ The nonanalytio® term in F, also found in the C8) model
the ordering kinetics of bulk nematics is considered in which(2.16), is due to the presence of point monopole defects.
monopoles appear. The model consists of mapping the dire¢Jsing a fourth-order Runge-Kutta scheme, the nonlinear ei-

tor n near a monopole directly onto a three-componeng@€nvalue problem represented by E¢®.12 and (4.5 is

. - e A _ solved ford=3. The eigenvalue igg=1.273 06 . ., which
(e;;trj?sgan auxiliary fieldn via n=m. Thus the order param differs from the valugu=0.5558. .. for the C8) model[2].

The functionF is plotted in Fig. 2 along with the scaling
—AMIM.Mm.—L5 1 4.1 fu_ncuor] for order-paramfater correlations in the three-
Qap=A(MMaMg =5 0] @D dimensional @) model. Figure 2 also compares the cell-

Since the isotropic monopole core can be connected to thdynamical simulation data for the bulk nemaffs] to the
nematic minimum along thB=0 line on the potential sur- function 7 [Eq. (4.5]. The function does not describe the
face (Fig. 3), a biaxial piece does not appear in H4.1).  Simulation data as well as the string model, showing devia-
Equation (4.1) solves the Euler-Lagrange equati¢p.25  tions at short distances. These deviations are expected since
written in terms ofm the structure of the theory at short distan¢&$) represents

' the wrong defect§monopoles instead of the correct ones

VranaB: Pag (4.2) (strings. A
Since the zeros ofm locate the monopole cores, the
if the amplitudeA satisfies monopole number density can be expressed in terms of the
auxiliary field m [14] as
VZA— EA—§ﬂ(A 0) 4.3
M 2 2 9AV ' n=&(m) |det(am;)|, (4.7)
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average monopole number density obéps~ L 3~t~ 2

This result holds only for monopole annihilation in the ab- APPENDIX A

sence of strings, the case considered in this section. In the
experiments of Chuanet al. [7], where monopole annihila-

tion occurred in the presence of strings, the average mon
pole density was observed to decay faster, With~t 3.

This appendix presents the calculation of the average line
Sensity for stringg ) for the O() model ind=n+1 spa-
tial dimensions, defined as

(m=(a(s)|al), (A1)
V. DISCUSSION
. . ] ) ~with
The dominant scaling behavior observed during ordering
in the bulk nematic is well described by the theory presented 1
here in which string defects are the major disordering agents. Qo= 1 €apy-pn €y oy VuySuy Vi Sy (A2)

The growth lawLs~t? is recovered, leading to an average

string line density ) that decays ag¢n)~t~1, as seen in  The form (A2), where e is the fully antisymmetric tensor,

experimentd 7]. The theoretically determined scaling form generalizes the definitiof8.24) for the tangent vector to a

for order-parameter correlations in the bulk nematic is showrstring ind= 3. The one-point averagé1) can be written in

analytically to beexactlythat for the three-dimensional(2) an integral form

model[2], and this is in excellent agreement with the simu-

lation results[5] (Fig. 1). This paper addresses the issue of -

biaxiality near the string cores and demonstrates that it is <’7>:f :111:1 dé;, |o(£)[G(¢) (A3)

irrelevant to the leading-order scaling properties of the sys- o

tem. However, the theory is capable of being extended intgn terms of

the prescaling regime, where biaxiality may play a role in the

dynamics. 1 v v
The major accomplishment of this work is the explicit ®al(€) =TT €apy o pg€ry vy €y

demonstration of the isomorphism between the late-stage or-

dering in the bulk nematic and the late-stage ordering in th@nd the one-point reduced probability distributi@®(¢),

three-dimensional @) model, within the Gaussian approxi- given by

mation. It is shown that, in the scaling regime, the order-

n+1n

(Ad)

n+1n
parameter equations of motion for théZpmodel (2.1) and _ - v
the bulk nematig2.19 produce the same scaling equation G(&)= 5(5)”:11_[y:1 8(£,=Vus)) |- (AS)

(2.12 for the correlation function. The essential element in

the present theory, which was missing in earlier theorieSThe Gaussian average in E@A5) is straightforward to
[10], is the mapping3.13), which explicitly includes string evaluate by first writing theS functions in the integral rep-
defects and makes a direct connection with ti@)@nodel.  resentation and then performing the resulting standard
As a consequence, results for th€2Dmodel, such as string Gaussian integrals. One finds

and vortex density correlatiori§4,31] or conservation laws

involving string densitie$32], can be directly applied to the (6) 1 1
bulk nematic. = n/2 (2)1n(n+1)/2
This paper also presents a model for bulk nematics in [2m SO [27S 7]
which monopoles appear. The model is applicable to situa- nein (g2
tions where monopole-antimonopole annihilations occur in xXexp — E % , (AB)
isolation from string defects. Such scenarios have been real- p=1lr=128

ized experimentally17], and the data are suggestive of the
growth law L,~t*? predicted by the theory. However, to
properly treat monopole dynamics in the presence of strings, 1

theories that include interactions between string and mono- So(t)= —<[§(O,t)]2), (A7)
pole defects are required. This interesting aspect of the prob- n
lem is under current investigatiqi.6].

with the definitions

n+1n

> (V8.7 (A8)

(2) —
S n(n+1),-T-
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with the n-dependent constaft, defined as

n+1n

1 -
C“:7.,r1<n—+1>/2J le;[Fl d¢;, |o(€)]

n+1n

xex;{— >

(6,’1)2) : (A10)
u=Tp=1

Forn=2 it can be shown that,=1 [16]. SinceSy(t)~t at
late times, the average line density of string scales like
<77>~t—n/2_

In particular, forn=2, {n)~t~ 1,

(A11)

APPENDIX B

This appendix outlines the evaluation of the average

A=([m(r,t)-m(01)]%) (B1)

appearing in the correlation functigd.4) for the monopole

model. For am-component Gaussian field, the averagé
can be written in the integral form

YRV YA
X1-X > >
A:f dnxlanZ%q)(xl,Xz)

(B2)
X1)“(X2)

in terms of the two-point reduced probability distributidt

n ’}/2 . . Lo
ex;{—i(forxg—fol-xz)),
(B3)

- - Y
q)(xl,xz):[%

where the auxiliary field correlation functidnis defined in
Eq. (2.9 and y=1/\/1— f2. The identity

Y =2joxdrlr1exp—x§r§ (B4)
allows A to be written as a Gaussian integral
® " 52
A:llinlfo drlrlfO drzrzw
Xf d"x;d"x, E)A(il,iz,rl,rz), (B5)

with

6851

2
2, V.2
r2+ =
1" 2

X1

ENEA AR —
A(X11X27rlar2)_mﬁ ExXp—

2
r§+%

The integrals ovex; andx, in Eq. (B5) are readily done.
After differentiating with respect ta and setting\ =1, the
integral overr, is performed. After a change of variables
y=(r,)?, the following integrals remain:

o yz -1 1\ N2
_o—(ni2+1) v +
A=2 fodyy+2) y+2)
- yz -1 1\ —(M2+1)
+27(n/2+2)n72f2J' dy y+_ y+_
0 2 2
(B7)

These integrals can be expressed in terms of hypergeometric
functionsF [33], giving

Iny
A=1-——r0 forn=2, (B8)
ye—1
(n—1) 1 )
A=1+ ——— ——(F[1,1n/2;f]-1)~1
Y (n=2)] yf
forn>2. (B9)
In particular, forn=3, Eq.(B9) gives
A 1+2 ! (ysinff—f)—1 (B10)
=1+ —| —=(ysin *f-f)—1{,
2 2f3

which leads to Eq(4.5 for F in the nematic with mono-
poles.
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